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AbstratWe onsider the real-time holography on Anti-de-Sitter (AdS) and more gen-erally on Lifshitz spaetimes for spinorial �elds. A Lifshitz spaetime hasanisotropi saling properties for the time and spae oordinates. The equa-tion of motion for fermions on general Lifshitz spae is derived here for the�rst time. Analytially solvable ases are identi�ed. On AdS spae we de-rived time-ordered, time-reversed, advaned and retarded propagators withthe orret i�-insertions. Using the Keldysh-Shwinger ontour we also al-ulated a propagator on thermal AdS. For massless fermions on the Lifshitzspaetime with z = 2 we alulated the Eulidean 2-point funtion and ex-plored the struture of divergenes of the on-shell ation for general values ofz and m. The ovariant ounterterm ation whih anels the highest orderdivergene is derived.
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Chapter 1Introdution to AdS/CFTCorrespondeneAdS/CFT orrespondene is one of the main ahievements in theoretialphysis during the last 15 years. In short, it is a onjeture saying that someonformal gauge �eld theory (CFT) is equivalent to the string theory on thespeial bakground alled Anti de-Sitter spae (AdS). The usual interpreta-tion is that the CFT lives on the onformal boundary of AdS spae. HeneAdS/CFT is a realization of holographi priniple saying that for some physi-al systems the information in the volume (bulk) is enoded on the boundaryof the volume.For deeper understanding of this equivalene there was developed a holo-graphi ditionary whih translates physis from the one theory to another.In this thesis we address one partiular piee of this ditionary: how all thedi�erent real-time orrelation funtions whih an be omputed in CFT areenoded in the bulk physis. The orresponding question for Eulidean or-relators was settled already in the very �rst papers on the subjet [1�3℄, butfor real-time orrelators the appropriate formalism was developed only in lasttwo years by Kostas Skenderis and Balt van Rees in a series of papers [4�6℄.In this thesis the emphasis is on the generalization of this formalism to thease of fermioni �elds.The struture of the thesis is as follows. The �rst two hapters onsist of7



well-known material whih is presented in many details in extensive litera-ture. In the �rst hapter we give a short introdution into the broad subjetof AdS/CFT orrespondene. Seond hapter is the review of the holographirenormalization for Eulidean and real-time orrelators. We then generalizeand apply the formalism, developed here, to the fermions in the third hapter.And �nally in the fourth hapter we address the question of the renormal-ization of fermioni orrelators on Lifshitz spaetimes. The third and fourthhapters onsist of mostly new material (exept setions 3.2 and 3.3).In this hapter we will give an idea of how the AdS/CFT onjeture omesabout, what is the evidene for it, et. Details and further referenes may befound in a number of extensive reviews [7�10℄.1.1 The Idea of Holography1.1.1 D-Branes, Duality between Open and Closed Strings,Large N ExpansionsAt the heart of holographi duality lies the twofold interpretation of theso-alled Dp-brane solutions in supergravity (SUGRA) or superstring the-ory. In supergravity, Dp-branes are speial solitoni (BPS) solutions of theequations of motion. Intuitively one an think of them as blak hole - like((p+1)-dimensional) objets. In partiular they have a horizon. What is theirmeaning in superstring theory? So far there have not been obtained suh so-lutions for the stringy equations of motion, but supergravity is well knownto be the low-energy limit of superstring theory, in whih the supergravitysetor deouples. The important point is that suh solutions are believed tobe proteted by supersymmetry along the renormalization group (RG) �owfrom the infrared (IR) to the ultraviolet (UV) region, i.e. Dp-branes shouldbe onsidered as real players not only in SUGRA approximation but in thefully quantized superstring theory [11�15℄.Another important point for the later disussion is that the low-energylimit of superstring theory is known even on the given non-trivial bakground- it beomes the SUGRA on that bakground, although it is still not known8



how to onstrut full onsistent quantized superstring theory on general non-Minkowski bakgrounds. Thus, the disussion above applies also in the on-text of AdS/CFT orrespondene, where the underlying spaetime is AdS.First interpretation of the Dp-branes in supergravity theory (and hene insuperstring theory) is that they play the role of the soure for the graviton. Insuperstring theory gravitons are partiular exitations of losed strings. Theyan be reated by a Dp-brane, propagate and annihilate on another Dp-brane.On the other hand, string theory itself requires non-perturbative extendedobjets in order to inorporate open strings. Thus the seond interpretation isthatDp-branes are objets whih implement the Dirihlet boundary onditionsfor the open string. In this ase it is known that exitations of open stringattahed to a stak of N suh objets at low energy give rise to a SU(N)gauge theory living on the volume spanned by the moving brane (so-alledbraneworld).Now omes the ruial point. It is believed that these two pitures ofDp-branes in string theory an be identi�ed (the evidene for it is based onthe BPS-properties and equality of R-harges for both interpretations [16℄).Thus, Dp-branes play two roles in string theory, whih are believed to givetwo equivalent interpretations of the same physial reality.Another piee of wisdom is the disovery made by 't Hooft, that somequantum �eld theories may simplify, when the number of �elds goes to in-�nity (or the rank of gauge group N ! 1). The lassial examples of thisphenomenon inlude linear sigma model [17℄ and the large N matrix theories.In the latter ase one an see, that in the large N limit the planar diagramsgive the most important ontribution to the theory (one an go even furtherand identify these diagrams with stringy worldsheets). Surprisingly, althoughthis situation is very di�erent from QCD, one an still draw some importantonlusions even for �nite N theories. For instane, if one identi�es openstrings with mesons one �nds that they are weakly oupled and one an evenreprodue the Regge trajetories.In what follows we will often mention the N = 4 Super-Yang-Mills theory.We do not need any detailed knowledge of it, but we say a ouple of wordsabout its properties. The N = 4 Super-Yang-Mills theory is a gauge theory9



with a gauge �eld A�, four Weyl fermions �i, and six real salars �I, allin the adjoint representation of the SU(4) � SO(6) group (group, whihrotates supersymmetry generators). Its Lagrangian an be written downexpliitly, but is not very important for our purposes. It has a vanishing betafuntion and is a sale invariant theory on quantum level (onformal groupis SO(4; 2)). The S-duality (strong - weak oupling duality) is onjeturedfor this theory. In pratie, one works only with partiular setor(s) of thistheory (i.e. some subset of operators, e.g. hiral primaries) and thus thetheory simpli�es signi�antly.1.1.2 Original MotivationNow we are in position to give rough idea of the original argument given byMaldaena [1℄, leading to the AdS/CFT onjeture. Let us onsider a stakof N D3-branes in type IIB Superstring theory. The �rst interpretation ofthis situation leads to the piture in whih we have usual superstring theoryin the bulk, gauge theory (N = 4 SU(N) supersymmetri Yang-Mills theory)living on the brane and the interations between these two families of �elds.Shematially the resulting ation is S = Sbulk + Sbrane + Sint. Now we takethe low energy limit. String theory provides us with the natural energysale: we an measure energy in units of inverse string length. We keep theenergy of exitations E bounded and take the limit ls � p�0 ! 0 (suh thatE << 1=ls). In low energy (or large distane) limit bulk ation Sbulk beomesfree supergravity, Sbrane gives rise to N = 4 SU(N) Super-Yang-Mills theorywhih deouples from the bulk dynamis (Sint ! 0).But we have also the seond interpretation of this situation. D3-branesan be viewed as the soures for the gravitational �eld (beause they havegenerially non-vanishing tension). Taking again low energy limit we realizethat there are two kinds of massless exitations: massless �elds in the bulkand �elds living on the horizon of D3-branes (they appear to be masslessfor a distant observer beause of the redshift). Again, they deouple in thislimit. As a result we have two deoupled theories: free supergravity in thebulk and Type IIB superstring theory living on the near-horizon geometry of10



D3-branes (whih happens to be AdS5 � S5).Comparing these two situations, whih are supposed to be equivalent,and identifying the dynamial parts one is lead to the onjeture: N = 4SU(N) Super-Yang-Mills theory on Minkowski spae is dual to the type IIBsuperstring theory on AdS5 � S5.This statement is extremely non-trivial. But there is some additionalevidene, that these two apparently very di�erent theories have something inommon. To realize it let us think about the symmetries of these two theories.N = 4 SU(N) Super-Yang-Mills theory is well known to be a onformal �eldtheory. Thus, it has SO(4; 2) onformal symmetry group. But it is exatlythe isometry group of AdS5! More then this, N = 4 SU(N) Super-Yang-Millstheory has global SU(4) symmetry whih rotates 4 SUSY generators. Again,SU(4) is loally isomorphi to SO(6), whih is the isometry group of S5!Thus, these two theories have the same global symmetries.Type IIB superstring theory on AdS5 � S5 is still quite ompliated the-ory to work with. In order to simplify it one usually onsiders tree levelsupergravity theory, i.e. string oupling is sent to zero gs ! 0. In additionone sends N !1, suh that gsN !1. On the CFT side it orresponds tothe t'Hooft (or planar) limit � = g2YMN ! 1 and N ! 1, where � is thee�etive oupling onstant in �eld theory. This point makes the Maldaenaonjeture partiularly exiting. If this kind of duality is orret, then wehave an aess to the strong oupling limit of a quantum �eld theory. Inter-estingly, this QFT is dual to the lassial gravity theory. On the other hand,it makes it partiularly di�ult to test this onjeture, sine there is onlyvery limited amount of alulations we an do in the strong oupling limit inquantum �eld theory.1.1.3 Geometry of AdS SpaesAnti-de Sitter spae (AdS) appears as a (part of) geometry near the horizonof D-branes. Therefore we review here some of the most important proper-ties of AdS spae. AdSd+1 spae is a homogeneous (i.e. eah point an betransformed into another one by an isometry) isotropi spae with onstant11



negative urvature. It an be embedded in Rd+2 as a hyperboloidX20 +X2d+1 � dXi=1 X2i = L2; (1.1)with the metri ds2 = �dX20 � dX2d+1 + dXi=1 dX2i : (1.2)L is alled the radius of AdS. (1.1) an be solved by settingX0 = L osh � os �; Xd+1 = L osh � sin �Xi = L sinh � 
i(i = 1; :::; d;Xi 
2i = 1); (1.3)with � � 0 and 0 � � � 2�. These oordinates over the hyperboloidone and are alled �global oordinates�. The topology of this hyperboloidis S1 � Rd, with S1 representing losed timelike urves in the � diretion.To obtain a ausal spaetime we simply unwrap this irle and obtain theuniversal overing of the original hyperboloid with no losed timelike urves.We list some important properties of AdSd+1:� The isometry group is SO(2; d).� It has a d-dimensional onformal boundary.� The osmologial onstant is negative, 0 > � = � 1L2d(d� 1).� Massive �elds an never get to the onformal boundary, but massless�elds an go to the boundary and bak in �nite proper time.� Field theories involving negative mass �elds an still be stable (thereis the so-alled Breitenlohner - Freedman bound on the mass of salar�eld: m2 � �d24 ).There are many kinds of oordinates for AdS spaes. In addition to the'global' parameterization (1.3) there is another set of oordinates often used12



in the literature (y; t; ~x) (0 < y; ~x 2 Rd�1). It is de�ned byX0 = 12y (1 + y2(1 + ~x2 � t2));Xi = yxi;Xd = 12y (1� y2(1� ~x2 + t2));Xd+1 = yt; (1.4)where we set the radius of AdS L = 1. These oordinates over one half ofthe hyperboloid (1.1). In new oordinate the metri beomesds2 = �dy2y2 + y2(�dt2 + d~x2)� : (1.5)For the disussion of renormalization, the so-alled Fe�erman - Grahamoordinates are very onvenient. One obtains them by setting u = 1=y. Inthose the metri takes the formds2 = du2 + �ijdxidxju2 : (1.6)The u � 0 oordinate represents the radial diretion and the onformalboundary is at u = 0. In this form one also sees expliitly that this metri issale invariant (invariant with respet to the salings x! �x; u! �u).Often it is enough if the spaetime is only asymptotially AdS (AAdS),i.e. it is approahing AdS geometry near the onformal boundary. In thisase we an replae �ij in the above expression by some more general metrigij(x) whih is approahing �ij when u! 0.1.1.4 PresriptionNow it is time to larify in whih sense these theories are equivalent. Itis important to observe that N = 4 SU(N) Super-Yang-Mills theory, beinga onformal theory, does not possess an S-matrix, i.e. one an only speakabout the orrelation funtion of gauge-invariant operators (gravity annot13



have any lue about the SU(N) gauge symmetry). The basi idea is to iden-tify the generating funtional of onneted orrelators in the superonformalgauge theory with the minimum of the supergravity ation, subjet to someboundary onditions. To be more onrete, think of salar �eld � of themass m in the bulk. Let O be its dual operator of onformal dimension �(whih is related to the mass m) on the �eld theory side (i.e. O lies in thesame representation of global symmetries as �). There are two linearly in-dependent solutions to the equation of motion for � whih are haraterizedby their boundary behavior. One mode is normalizable and another is non-normalizable. Non-normalizable modes have some given boundary behavior�! ud���0. We identify this �0 with the soure for O. The basi presrip-tion then says that the supergravity partition funtion (whih is a funtionalof the �elds parameterizing the boundary behavior of the bulk �elds) is iden-ti�ed with the generating funtional of QFT orrelation funtions�exp[Z ddx�0O℄�CFT = e�Son-shell[�0℄; (1.7)where Son-shell[�0℄ is the supergravity ation evaluated on the regular solutionwith the given asymptoti behavior and is viewed as a funtional of theboundary value �0. This presription fails in Lorentzian signature, sine inthat ase generially there is no regular solution to the equation of motion.Let us summarize basi points of AdS/CFT presription:� The bakground solution is assoiated with the vauum of the dualQFT. Perturbations around the bakground are assoiated with orre-lation funtions of gauge invariant operators.� The isometries of the bulk solution orrespond to global symmetries ofthe boundary theory. Reall that the AdS group in d + 1 dimensionsSO(d; 2) oinides with the onformal group in d dimensions.� Gauge invariant operators of the boundary theory are in one-to-one or-respondene with bulk �elds. For example, the bulk metri orrespondsto the stress energy tensor of the boundary theory.14



� In a spaetime with a boundary one needs to speify boundary ondi-tions for the bulk �elds. The leading boundary behavior of the bulk�eld is identi�ed with the soure �0 of the dual operator.� Correlation funtion an now be omputed by funtionally di�erenti-ating with respet to the soures. For example,hO(x)i = ÆSon-shellÆ�0(x) (1.8)hO(x1)O(x2)i = � Æ2Son-shellÆ�0(x1)Æ�0(x2) (1.9)� A naive use of these formulas however yields in�nite answers. The on-shell value of the ation is in�nite due to the in�nite volume of theAAdS spaetime. Similarly, the QFT orrelators diverge and need tobe renormalized. The goal of holographi renormalization is to makesuh formulae well-de�ned.1.2 Some Tests and Extensions of AdS/CFTCorrespondeneEquation (1.7) is the basi presription of AdS/CFT orrespondene. Sofar we gave only heuristi arguments for it. But there are many alula-tions whih an be done in order to test this duality. One an alulate2-point [2℄ and 3-point funtions [18℄, math the spetra of two theories, al-ulate onformal anomalies [19℄. The interested reader is invited to onsultextensive literature on this subjet. Here we want to note that alulationsin strongly oupled N = 4 SU(N) Super-Yang-Mills theory an generiallybe done only for the quantities whih are proteted by the supersymmetrinon-renormalization theorems. Then one an perform perturbative alula-tions in the weak oupling limit. So far there was found no mismath whenthese alulations were ompared with gravitational ones. Gravity produesalways the orret results for the quantities we an alulate on CFT side.15



The numerous tests of the AdS/CFT orrespondene made people believethat this duality should hold also in some other situations. Several extensionsof AdS/CFT orrespondene proved to be very plausible and useful. Indi�erent settings onformal symmetry or some amount of supersymmetryis broken. In this ontext one talks generally about gauge/gravity duality.For example one an introdue the �nite temperature by putting a blak holein the bulk [20℄. The Hawking temperature of the blak hole orresponds tothe temperature on the �eld theory side. Giving a harge to the blak holeresults in introduing hemial potential in the �eld theory. Using standardtehniques suh as lattie gauge theory, it is so far nearly impossible to getany numerial results for dynamial proesses in strongly oupled systemswith �nite temperature and hemial potential. Hene gauge/gravity is sofar the only soure of reliable results for suh systems. One of the mostfamous results is the bound on the shear visosity - entropy density ratio:�s � 14� [21,22℄. Holographi realizations of further e�ets (e.g. di�erent phasetransitions, hiral symmetry breaking [23℄, super�uidity and superondutors[24�26℄, et.) were also found.In reent years there was a lot of work devoted to the fermions in gauge /gravity duality. It was found, that holographi models open a window to theunderstanding of many interesting phenomena in strongly oupled ondensedmatter physis, suh as superondutivity, super�uidity, quantum ritiality,et [27,28℄. On the searh of holographi dual to quantum hromodynamis(the so-alled AdS/QCD orrespondene) fermions also play an importantrole. Clearly fermioni �elds deserve the attention we pay to them in thisthesis.
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Chapter 2Holographi RenormalizationIn this hapter we give a brief review of the formalism of holographi renor-malization. Simultaneously we provide the preise reipe, how to alulaterenormalized QFT orrelation funtions using the physis in the bulk. Forthe ase of Eulidean signature we follow mostly the pedagogial introdu-tion of [29℄. The appropriate formalism for real-time renormalization wasintrodued in [4, 5℄.2.1 Eulidean Signature2.1.1 Basi Idea and Example(s)As already mentioned the presription (1.7) is only a formal equality. Gener-ially both sides of it are in�nite. To ure this obstale we must subtrat thein�nities adding ovariant ounterterms. The short reipe is provided in [29℄:1. Compute the most general asymptoti solution of the bulk �eld equa-tions.2. To regulate the divergenes we restrit the radial oordinate to have a�nite range u � �, and evaluate the boundary term at u = � on theregular solution: Sreg[�; �℄ = Son-shell[�(u = �)℄ (2.1)17



3. We evaluate the ation on the asymptoti solutions and isolate theterms whih diverge as �! 0.4. We subtrat the in�nite terms by adding suitable ovariant ountert-erms SCT : SCT [�(x; u = �)℄ = �divergent terms ofSreg[�; �℄; (2.2)where SCT must be expressed in terms of the �elds living on regulatingsurfae u = � and the indued metri ij = gij(x; �)=�. This is neededto ensure the ovariane.5. We de�ne a subtrated ation at the uto�Ssub[�(x; u = �)℄ = Sreg[�; �℄ + SCT [�(x; u = �)℄: (2.3)It has a �nite limit as �! 0.6. The renormalized ation is then given bySren[�0℄ = lim�!0 (Sreg[�; �℄ + SCT [�(x; u = �)℄) (2.4)We need to distinguish between Ssub and Sren beause the variationsrequired to obtain orrelation funtions are performed before the limit�! 0 is taken.7. Exat 1-point funtion is obtained by di�erentiating the subtratedation with respet to the �eld on the regulating boundary and thentaking the limit �! 0:hO(x)i = lim�!0� 1� d2�m 1p ÆSsubÆ�(x; u = �)� ; (2.5)where  is the determinant of the indued metri and m is the diver-gene degree of the soure.8. From the renormalized 1-point funtion all the other renormalized n-point funtions ontaining the same operator O an be obtained by the18



di�erentiation with respet to the soure �0.For ompleteness we would like to mention, that there is yet anothertehnique of holographi renormalization whih is based on Hamiltonian for-mulation and is extremely useful for pratial alulations [30, 31℄.2.1.2 ExampleNext, we want to illustrate this reipe on a simple example: Massive salaron pure AdS (see [29℄ for more details). We take the metri of AdS in theform ds2 = d�24�2 + 1�dxidxi; (2.6)where we put � = u2 in (1.6). The ation for the massive salar �eld � isS = 12 Z dd+1xpG(G�������� +m2�2): (2.7)The equation of motion is(��G +m2)� = � 1pG��(pGG�����) +m2� = 0: (2.8)This equation an be solved analytially on pure AdS but we �rst outline theholographi proedure on asymptotially AdS (AAdS) spaetime.First, we write the asymptoti expansion for a solution. The equation ofmotion is seond order, hene we look for a solution of the form�(x; �) = � d��2 �(x; �)= � d��2 (�(0)(x) + �(0)(x)� + :::+ �n(�(2n)(x) + ln � (2n)(x)) + :::);(2.9)where �(0)(x) orresponds to a soure (boundary ondition), �(2n)(x) - to arespone, and  (2n)(x) - to the matter onformal anomaly [19℄. Setting this
19



solution bak into the equation of motion we get(m2 ��(�� d))�� �(�0�+ 2(d+ 2� 2�)���+ 4��2��) = 0; (2.10)where �0 = Æij�i�j is the D'Alambertian on the boundary. The easiest wayto solve (2.10) is to suessively di�erentiate with respet to � and then set� = 0. In this way we obtain m2 = �(�� d); (2.11)whih is the well-known relation between the mass of the salar �eld in thebulk and the onformal weight of the dual operator in the bulk. (2.10) reduesto �0�+ 2(d+ 2� 2�)���+ 4��2�� = 0: (2.12)Setting � = 0 we get an algebrai equation for �(2), whih is solved by�(2) = 12(2�� d� 2)�0�(0): (2.13)Di�erentiate (2.12) with respet to � and then set � = 0. The result is�(4) = 14(2�� d� 4)�0�(2): (2.14)Continuing this way we an obtain almost all the oe�ients �(2j). Thisproedure stops, however, when 2� � d � 2n = 0. At this order we haveto introdue the logarithmi term to obtain a solution. For onretenessonsider the ase 2�� d� 2 = 0, i.e. � = d2 + 1. The asymptoti expansionis given by �(x; �) = �(0) + �(�(2) + ln � (2)) + ::: (2.15)
20



Inserting this equation into (2.12) gives (2) = �14�0�(0) (2.16)and we �nd that �(2) is not determined by the asymptoti analysis. It anbe found using the regular analyti solution to the equation of motion.We are now in position to evaluate the regularized ation on the asymp-toti solution,Sreg = 12 Z���dd+1xpG(G�������� +m2�2)= 12 Z���dd+1xpG�(��G +m2)�� 12 Z�=�dxpGG������: (2.17)The bulk term vanishes on the solution to the equation of motion and wean isolate the divergent termsSreg = Z�=�ddx(���+ d2a(0) + ���+ d2+1a(2) + :::� ln �a(2��d)); (2.18)where the oe�ients a(2i) are loal funtions of the soure �(0):a(0) = �12(d��)�2(0); a(2) = �(d��+ 1)�(0)�(2):::a(2��d) = � d22��d�(2�� d)�(2�� d+ 1)�(0)(�0)2��d�(0): (2.19)Now we want to �nd the ovariant ounterterms SCT whih anel thedivergenes in Sreg. For this we need to reexpress �(0) in terms of �(x; �) (forovariane). To seond order we obtain�(0) = �� d��2 ��(x; �)� 12(2�� d� 2)��(x; �)� ;�(2) = �� d��2 �1 12(2�� d� 2)��(x; �); (2.20)where � is the Laplaian of the indued metri ij = Æij� at � = �. It issu�ient to rewrite a(0) and a(2) in terms of �(x; �). The ounterterm ation21



is then given bySCT = Z ddxp�d��2 �2 + 12(2�� d� 2)��� + higher derivatives�:(2.21)Notie, that when � = d=2+1 the oe�ient of ��� is replaed by �14 ln �.Similarly, when � = d=2+k there is a k-derivative logarithmi ounterterm.Sren is now given by (2.4). We still an add �nite ounterterms to it. Thisorresponds to the sheme dependene on the �eld theory side.Renormalized 1-point funtion ishO�i = lim�!0� 1��2 1p ÆSsubÆ�(x; �)� : (2.22)For onreteness we disuss the � = d2 + 1 ase. Now,ÆSsub = ÆSreg + ÆSCT= Z���dd+1xpGÆ�(��G +m2)�+ Z�=�ddxpÆ���2���� + (d��)�� 12 ln ���� :(2.23)On shell ÆSsubÆ� = p(�2���� + (d��)�� 12 ln ���): (2.24)Substituting for � the expliit asymptoti expansion we �nd that the diver-gent terms anel, as promised, and the �nite part equalshO�i = �2(�(2) +  (2)): (2.25)Here we see that, indeed, �(2) orrespond to the respone to the perturbationand is not determined by the asymptoti analysis. This is very generi featureof suh alulations: to �x 1-point funtion we need regular solution.  (2)22



term is atually sheme dependent. One an remove it ompletely by addingto the SCT a �nite term proportional to the onformal anomaly.So far we investigated only near-boundary behavior. Holographi 1-pointfuntion involves a oe�ient whih is not determined by asymptoti analysis.Now we solve the equation of motion analytially, impose regularity in thebulk and get this oe�ient. For de�niteness we work in d = 4 and onsiderthe ase � = d=2 + 1 = 3. We hange radial variable � = u2 and � = ud=2�,and we also Fourier transform in boundary diretions (we have Eulideansignature on the boundary theory). The equation for � isu2�2u�+ u�u�� (k2u2 + 1)� = 0: (2.26)The regular solution is� = K1(ku) = 1ku + �14(�1 + 2) + 12(� ln 2 + lnku)� ku+ :::; (2.27)where we have expanded the modi�ed Bessel funtion K near the boundaryof the bulk u = 0 (k = jkj). Converting bak to � oordinate we get�(k; �) = � d��2 �(0)(k)�1 + ��(14(�1 + 2) + 12 ln k2)k2 + 14k2 ln ��� + ::::(2.28)We now read o� (2)(k) = 14k2�(0)(k)!  (2)(x) = �14�0�(0)(x); (2.29)�(2)(k) = �(0)(k)�14(�1 + 2) + 12 ln k2� k2: (2.30)Notie that the exat solution orretly reprodues the value for  (2) as de-termined by the near boundary analysis. We found also that �(2) is relatednon-loally to the soure �(0). That is why it is impossible to get it from theasymptoti analysis.
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Inserting lst two equations bak in (2.25) we gethO�(k)i = �2�(0)(k) ��14(�1 + 2)� 12 ln 2 + k24 � + k24 ln k2� : (2.31)The terms in parenthesis lead to ontat terms in the 2-point funtion andan be dropped out. When the renormalized 1-point funtion is known as afuntional of the soure all the other renormalized orrelation funtions anbe obtained by di�erentiating 1-point funtion with respet to the soure.We get hO�(k)O�(�k)i = Æ hO�(k)iÆ�(0)(�k) = 12k2 ln k2: (2.32)This is the orret form for the 2-point funtion of the operator of the on-formal dimension � = d=2 + 1 = 3.2.2 Lorentzian SignatureFirst alulations in AdS/CFT orrespondene relied on the reipe providedin [2,3℄ for the Eulidean orrelators. Working in the Eulidean signature is aommon and onvenient pratie, sine usually one an analytially ontinueEulidean orrelators to the ase of Minkowski signature. In many ases,however, it is desirable to extrat the real-time orrelators diretly fromgravity. Many important and interesting properties of gauge theories at �nitetemperature and �nite density, most notably the response of the thermalensemble to small perturbations that drive it out of equilibrium, an only belearned from real-time Green's funtions.From the more theoretial point of view one would like to understand theinterplay between ausality and holography. Sine bulk and boundary lightones di�er from eah other it is not a priori lear that bulk omputationprovide the orret ausal struture. More spei�ally, we want to studydynamial proesses (or proesses on time-dependent bakgrounds) suh asgravitational ollapse.For some years it was a real hallenge to generalize the Eulidean reipe24



for real-time orrelators. The main di�ulty is the following: in Eulideansignature the requirements of the regularity in the bulk and normalizabil-ity on the boundary determine the solution to the bulk equation of motionuniquely. When we onsider the boundary Lorentzian signature, this is notthe ase anymore. Generially, in order to onstrut regular solution onemust sum in�nitely many normalizable solutions. A related issue is that inLorentzian ase one also has to speify initial and �nal onditions for the bulk�elds. These onditions should be related to a hoie of in- and out-state inthe Lorentzian boundary of QFT.It leads to the question: whih ondition one has to impose in the interiorof the bulk? Already in late 1990s it was onjetured that di�erent ondi-tions in the bulk orrespond to the manifold of di�erent orrelators one analulate in real-time QFT [32�34℄. There is one partiular hoie of suh aondition whih looks espeially natural: look for an infalling wave solution,i.e. for a solution whih desribes a wave moving toward the horizon. Suha hoie should orrespond to the time-ordered (Feynman) orrelator on the�eld theory side. This reipe was �rst put forward in [35℄ and sine thenused widely for performing real-time alulations. In spite of its power ithas a ouple of serious drawbaks. First, this presription an be appliedonly for the alulation of 2-point funtions. Seond, the existene of a hori-zon is assumed in the bulk. This is somewhat unsatisfatory, sine from theholographi point of view all the information should be enoded only on theboundary of the spaetime.Reently, new approah to this problem was developed in [4, 5℄. Thestarting point there is the observation, that di�erent real-time orrelators anbe spei�ed by the hoie of the ontour in a omplex time plane. Examplesare given in the �gure 2.2. In [6℄ it was explained when the new onstrutionis equivalent to the imposing infalling boundary ondition at the horizon.Taking priniples of the holography seriously one should re�et the hoieof the ontour on the gravitational side too. The ingenious idea in [4℄ is tostart with a QFT time ontour and '�ll it in' with a bulk manifold. It is, realsegments of the ontour are assoiated with the Lorentzian spaetime, andimaginary segments - with Eulidean solutions. The Eulidean bulk solution25



whih is assoiated with the initial state on the QFT side an also be thoughtof as providing a Hartle-Hawking wave funtion for the bulk theory [36℄.In next subsetions we disuss the real-time presription of Skenderis andvan Rees in some more detail. For a omprehensive review onsult [5℄.2.2.1 Real-time QFTWe shall illustrate the main idea on the example of a salar �eld. Considera �eld on�guration with initial ondition ��(~x) at t = �T and �nal on-dition �+(~x) at t = T . To get the transition amplitude h�+; T j��;�T i onehas to integrate over all the �eld on�gurations onstrained to satisfy theseonditions h�+; T j��; T i = Z�(�T )=�� D�eiS[�℄ (2.33)If we are interested in vauum amplitudes we multiply this amplitude byh0j�+; T i and h��; T j0i and integrate over intermediate on�gurations �+and ��. The multipliations with these vauum wave funtions orrespondto extending the �elds in the path integral to live on the vertial segments inthe omplex time plane as shown if �gure 2.1. Indeed, the in�nite vertial seg-ment starting at �T orresponds to an amplitude lim�!1 
��;�T je��H j	�for some state 	 whih is irrelevant, sine the limit projets it onto the va-uum state. Similarly we obtain h0j�+; T i from the vertial segment startingat t = T .Thus, we an use the Eulidean path integral in order to reate the va-uum state whih is then used to onstrain the Lorentzian path integral. Or,we an ompute orrelators in non-trivial states. Similarly, in onformal �eldtheory there is the notion of operator - state orrespondene: inserting a loaloperator O at the origin of spae Rd and then performing the path integralover the interior of the sphere Sd�1 that surrounds the origin results in theorresponding quantum state 	O on Sd�1. In partiular, the vauum stateis generated by inserting the identity operator.Suppose that we want to ompute orrelators h	jTO1(x1):::On(xn)j	i of26
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Figure 2.1: This ontour in the time plane produes the time-ordered orre-lator. The �gure is taken from [4℄.gauge-invariant operators Oi in a given initial state 	 (T is time-orderingsymbol). We an write a generating funtional in the formZQFT [JI ;C℄ = Z D� exp��i ZCdtZ dd�1xp�g �LQFT [�℄ + JIOI(�)��;(2.34)where JI are the soures oupling to gauge-invariant operators OI . The pathintegral is performed for the �elds living on the ontour C in the omplextime plane.In fat, the hoie of the ontour C determines, what kind of orrelator weare alulating. Some examples of the ontours are presented on the �gure2.2. For instane, for real-time thermal orrelators one an use the losedKeldysh - Shwinger ontour in �gure 2.2. The vertial segment now repre-sents the thermal density matrix �̂ = exp(��Ĥ), with � = 1=T . The pointsindiated by irle should be identi�ed, and the thermal orrelators shouldsatisfy periodi / antiperiodi periodiity onditions for bosons / fermions.Depending on whih of two vertial segments we put the soures we get theKeldysh-Shwinger matrix of thermal propagators.2.2.2 PresriptionAfter short reapitulation of basi �eld theoreti fats we turn to the formu-lating of holographi presription. The ontour dependene disussed in theprevious subsetion should be re�eted in the bulk. Within the saddle-pointapproximation we assoiate to a QFT ontour C a supergravity solution ('�llin' the QFT ontour). The horizontal segments must be �lled with Lorentzian27
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Figure 2.2: Several possible ontours an be used in the time plane to produea) time-ordered orrelator, b) Wightman funtion, ) thermal orrelators.The �gure is taken from [5℄.solutions, while vertial segments - with Eulidean solutions. These segmentsare then glued together along bulk hypersurfaes that end on the orners ofthe ontour. The entire manifoldMC obtained in this way has a metri whosesignature jumps at the orners.Given this manifold MC , the next step is to ompute the orrespondingsupergravity on-shell ation. This ation is then identi�ed with the gener-ating funtional of orrelators in non-trivial states disussed in the previoussubsetionZQFT [JI ;C℄ = exp�i ZMCdd+1xp�GLSUGRA['; '(u! 0) = JI ℄� ; (2.35)where G is the determinant of the bulk metri and JI is the boundary value ofthe bulk �eld ' dual to gauge-invariant operator O. On Eulidean segmentstime is imaginary and after Wik rotation t ! �it one gets standart signin front of the ation. The soures JI that are loalized on the onformalboundary of Eulidean segments are related to the initial and �nal state(identity operator orresponds to the vauum). Whereas on the boundary ofLorentzian segments they orrespond to the real physial soures and the n-point orrelation funtions an be produed via the funtional di�erentiation28



with respet to them. In the bulk of this thesis we will be interested only invauum orrelators, although this formalism an be applied also to orrelatorsin non-trivial states.2.2.3 Mathing Conditions and CornersPieewise straight ontours have orners, where either vertial segment meetshorizontal one or two horizontal segments running in opposite diretions join.These orners extend to hypersurfaes in the bulk. We impose followingondition on them: the indued metri and all the �elds and their onjugatedmomenta must be ontinuous aross the orner. Note, that momenta arede�ned with respet to omplexi�ed time variable. These onditions giverise to the mathing equations whih allow us to �nd the unique orrelationfuntion orresponding to the given ontour.This mathing ondition an be justi�ed in the following way. Imagine,that we have string theory on some manifold M . The generating funtionalis given by the path integral over all possible �eld on�gurations. This pathintegral an be written in a di�erent way: split initial manifold M in twopiees M1 and M2 along some hypersurfae S. Then initial path integralan be replaed by the produt of two path integrals over all possible �eldon�gurations on M1 and M2 with the given boundary value of the �eldtimes the integral over all possible boundary data, i.e. �eld on�gurationson the hypersurfae S. The ontinuity of the �elds is imposed by the fatthat all �elds must have the same value on the boundaries of M1 and M2. Insaddle-point approximation the path integrals redue to the exponentiatedon-shell ations. Then perform the seond saddle-point approximation withrespet to the boundary data, i.e. vary on-shell ations with respet to theboundary value of the �elds. Variation of the on-shell ation with respet tothe �eld gives preisely the onjugate momentum, i.e. momenta must alsobe ontinuous aross the gluing surfae S.
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2.2.4 RenormalizationThe fundamental relation (2.35) is a bare relation, sine both sides are gener-ially in�nite. On the QFT side there are UV divergenes, but on the grav-itational sides the divergenes appear beause of the in�nite volume e�ets.To make this relation well-de�ned both sides need to be renormalized appro-priately. This renormalization proedure is a priori more ompliated thenin Eulidean ase.In the Eulidean ase the renormalization is done by introduing a set ofloal ovariant ounterterms. They are needed in order to make the on-shellation �nite and the variational priniple to be well-posed. In the Lorentziansetup there might appear new divergenes. First, there is an additional non-ompat diretion: time. This di�ulty is overome by gluing Eulideanmanifold near timelike in�nities. E�etively it replaes dangerous part ofthe Lorentzian manifold by the radial boundary of Eulidean AdS, whoseasymptoti struture is well known. The seond and the last problem arethe possible in�nities at the orners. In priniple, there an be new ornerin�nities whih would require new ounterterms. The absene of suh isguaranteed by the mathing onditions (ompare [5℄).2.2.5 ExampleWe are going to illustrate this formalism by an relatively easy low-dimensionalAdS3/CFT2 example of salar �eld (for more details onsult [4℄. BoundaryCFT lives on the ylinder S1 � R (where R represents time diretion) andhene we expet the spetrum to be disrete. We are going to omputetime-ordered vauum-to-vauum orrelator. We start with the ontour inthe time plane in �gure 2.1. The orners of the ontour are two irles whihwe denote as C�. The orresponding omposed manifold onsists of threepiees: a segment ML of Lorentzian AdS3 and two `aps' M� onsisting ofhalf of Eulidean AdS3 (see �gure 2.3). One an view these aps as providinga Hartle-Hawking wave funtion on the hypersurfaes S� (where �S� = C�).
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− Mδ LFigure 2.3: The CFT2 '�lled in' ontour for the alulation of the time-ordered propagator. The �gure is taken from [4℄.By the AdS/CFT onjetureh0jT exp �� i ZÆMLddxp�g�(0)O�j0i= exp �iSL[�(0); ��; �+℄� SE[0; ��℄� SE[0; �+℄�: (2.36)with ÆML the onformal boundary ofML as in �gure 2.3, SL[�(0); ��; �+℄ theon-shell Lorentzian ation for ML that depends not only on �(0) but also oninitial and �nal data ��, and SE[�(0;�); ��℄ the Eulidean on-shell ations onthe half Eulidean spaes M� with soures �(0;�) and boundary ondition ��at S�. In (2.36) we set the soures �(0;�) to zero sine we are interested invauum-to-vauum orrelators. Nonzero values for �(0;�) would orrespondto hanging the initial and/or �nal state, as it does in the CFT.�� are �xed by imposing ontinuity of �elds and onjugated momentaat the orners. Seond one is equivalent to the stationarity of the on-shellation with respet to boundary values ��:ÆÆ���iSL[�(0); ��; �+℄� SE[0; ��℄� SE[0; �+℄� = 0 (2.37)whih should be read as an equation for ��.We now speialize to a free massive salar �. The relevant part of thesupergravity ation is:S = 12 Z d3xpjGj(��������m2�2): (2.38)
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Dual operator O has onformal dimension � = 1 + p1 +m2 = 1 + l withl 2 f0; 1; 2; : : :g.We take the metri for AdS3 spae in the formds2 = �(r2 + 1)dt2 + dr2r2 + 1 + r2d�2: (2.39)The mode solutions to the equation equation of motion on this bakgroundare e�i!t+ik�f(!;�k; r) withf(!; k; r) = C!kl(1 + r2)!=2rkF (!̂kl; !̂kl � l; k + 1;�r2)= rl�1 + : : :+ r�l�1�(!; k; l)[ln(r2) + �(!; k; l)℄ + : : : (2.40)where !̂kl = (!+k+1+ l)=2, C!kl is a normalization fator hosen suh thatthe oe�ient of the leading term equals 1 and in the last line we omittedterms of lower powers of r and some terms polynomial in ! and k (whihwould lead to ontat terms in the 2-point funtion). Furthermore,�(!; k; l) = (!̂kl � l)l(!̂kl � k � l)l=(l!(l � 1)!) ;�(!; k; l) = � (!̂kl)�  (!̂kl � ! � l) ; (2.41)where (a)n = �(a+n)=�(a) is the Pohhammer symbol and  (x) = d ln�(x)=dxis the digamma funtion. Note also that f(!; k; r) = f(�!; k; r). Only thef(!; k; r) with k � 0 are regular for r ! 0, so the modes we use below areof the form e�i!t+ik�f(!; jkj; r).We would now like to obtain the most general solution whose leadingasymptoti (� rl�1 as r ! 1) ontain an arbitrary soure �(0)(t; �) for thedual operator. Clearly, it will onsist of non-normalizable mode with givenasymptoti behavior plus eventually some normalizable modes. Thus our
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ansatz for the solution is�(t; �; r) = 14�2 Xk2ZZCd! Z dt̂Z d�̂e�i!(t�t̂)+ik(���̂)�(0)(t̂; �̂)f(!; jkj; r)+X� Xk2Z 1Xn=0 �nke�i!�nkt+ik�g(!nk; jkj; r); (2.42)where C represents a ontour in the omplex !-plane whih de�nes how dowe go around the poles at:! = !�nk � �(2n+ k + 1 + l) ; n 2 f0; 1; 2; : : :g: (2.43)We are now ompletely free to speify any ontour that irumvents the poles(�gure 2.4). The di�erene between two di�erent ontours is a sum over theresidues: g(!nk; k; r) = I!nk d!f(!nk; k; r)� r�l�1�(!nk; k; l)�I!nk d!�(!; k; l)�: (2.44)The g(!nk; k; r) are the `normalizable modes'. Sine a hange of ontour anbe undone by also hanging the �nk, let us �x the ontour to be the Feynmanontour (solid line in �gure 2.4).Now onsider the solution on the `initial ap', so on the spae spei�edby the metri, ds2 = (r2 + 1)d� 2 + dr2r2 + 1 + r2d�2 (2.45)with �1 < � � 0, so that we have half of Eulidean AdS spae. On thissegment there are no soures and only normalizable modes are allowed. Sinethe solution should vanish at � ! �1, the most general Eulidean solutionontains only negative frequenies,�(�; �; r) =Xn;k d�nke�!�nk�+ik�g(!nk; jkj; r) ; (2.46)33
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Figure 2.4: There are many ways to de�ne the integration ontour in the !plane. The �gure is taken from [4℄.with thus far arbitrary oe�ients d�nk.We an now onsider the mathing at � = t = 0, whih will �x theinitial data. From the ontinuity �L(0; �; r) = �E(0; �; r) we �nd, usingorthogonality and ompleteness of the g(!nk; jkj; r) (for some more detailssee [4℄): �(0)(!�nk; k) + �nk + +nk = d�nk (2.47)Equation (2.37) yields a relation between onjugate momenta,�i�t�L = ���E : (2.48)Substituting the solutions we �nd�!�nk�(0)(!�nk; k)� !�nk�nk � !+nk+nk = �!�nkd�nk ; (2.49)so that +nk = 0. Similarly, the mathing to the out state determines �nk = 0,and indeed all the freedom in the bulk solution is �xed. Had we hosen anyother ontour in (2.42), we would have found nonzero values of some of the�nk, e�etively throwing us bak to the Feynman ontour in �gure 2.4.Finally, the two-point funtion is obtained from the r�l�1 term in theasymptoti expansion of (2.42) (with �nk = 0):h0jTO(t; �)O(0; 0)j0i = l4�2iXk ZCd!e�i!t+ik��(!; jkj; l)�(!; jkj; l): (2.50)with the ontour C being the same as for the bulk solution, thus the standard34



Feynman presription leading to time ordered orrelators. We emphasizeagain that C was ompletely �xed by the mathing to the aps. Integratingover C is equivalent to integrating over the real axis and shifting ! ! !(1+i�). The Fourier transform of this expression then givesh0jTO(t; �)O(0; 0)j0i = l2=(2l+1�)[os(t� i�t)� os(�)℄l+1 : (2.51)This is the expeted form for a time-ordered two-point funtion on a ylinderand the normalization oe�ient an be shown to agree with the standardAdS/CFT normalization of 2-point funtions.
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Chapter 3Holographi Renormalization forFermions on AAdSWe begin with some general remarks onerning fermions on asymptotiallyAdS spaetimes [37, 38℄.A Dira �eld  in the bulk with harge q is dual to a fermioni operator Oin CFT of the same harge. O is a Dira spinor for d odd, and a hiral spinorfor d even. In both ases the dimension of the boundary spinor O is half ofthat of  . For AdS spae the onformal dimension � of O is given in terms ofthe mass m of  by � = d2�m. � annot be negative, therefore for m > d=2one has only one possibility: � = d2+m. For 0 < m < d=2 there are two waysto quantize  by imposing di�erent boundary onditions at the boundary,whih orresponds to two di�erent CFTs. Usual interpretation is that oneof them is stable and another is unstable, i.e. there exists a deformation bysome operator whih makes it �ow towards the stable theory [39℄.In the bulk of the thesis we will assume that the mass m of the fermionis positive. Negative mass orresponds to the opposite hirality.
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3.1 Equation of Motion for Fermions on Lif-shitz (AdS) SpaetimeAdS spaetime is well known to be partiular ase of the so alled Lifshitzspaetime whih in turn is de�ned by the metrids2 = �dt2u2z + du2 + dx2u2 : (3.1)z is alled the dynamial exponent. For the ase of z = 1 the metri (3.1)redues to the AdS spae. We derive the equation of motion on generalLifshitz spaetimes. Later we will speialize to partiular ases. We onsiderthe quadrati part of the ationS = Z dd+1xp�gi(	�MDM	�m		) + Sbdy; (3.2)where DM = �M + 14(!M)AB[A; B℄ (3.3)is the ovariant derivative and (!M)AB are the spin onnetion oe�ients.Letters from the beginning of the alphabet denote the tangent frame indiesand those from the middle of the alphabet - spaetime indies. The Asatisfy the Cli�ord algebra �A; B	 = 2�AB. Sbdy is the boundary ationneeded for the variational priniple to be well posed. It is not importantfor the moment, sine it does not ontribute to the bulk dynamis. We willonstrut it in the next setion. Non-vanishing spin onnetion oe�ientsare (!t)tu = z=uz and (!x)xu = �1=u. Di�erent gamma-matries are relatedthrough the inverse vielbein �M = eMA A. We get the Dira operator�MDM = uzt(�t + 14 zuz [t; u℄) + uu�u + ui(�i � 14 1u [i; u℄)= uzt�t + ui�i + uu�u � d+ z � 12 u (3.4)37



After Fourier transforming the spinor in boundary diretions	 = ei!t�ikx (u)the Dira equation beomes(i!uzt + ikui + uu�u � d+ z � 12 u �m) = 0: (3.5)Applying (�MDM)2 �m2 to 	(u) yields�u2�2u � (d+ z � 1)u�u + �(z � 1)i!uzut + !2u2z � ~k2u2+ �d+ z2 �2 � 14 �m2 +mu�� (u) = 0: (3.6)We were not able to �nd the derivation of this result in the literature. Onegets the equation of motion for Eulidean signature just by replaing !2 !�!2. Now there are two interesting ases for whih we an solve this equationanalytially. First, on pure AdS (z = 1) the term ontaining the produt utvanishes identially and we an de�ne the Weyl projetor �� = 12(1 � u).Then 	� = ��	 satisfy u	� = �	�. The urrent hapter will be devotedmostly to this ase. Another solvable ase is z = 2 and m = 0. Then wean deompose the Dira spinor using �� = 12(1 � ut). The solution andanalysis of this ase is given in hapter 4.3.2 Boundary TermThe AdS/CFT in its weakest form is based on the stationary phase approxi-mation for supergravity, i.e. we evaluate the ation SSUGRA on-shell. For thestationary phase approximation it is ruial that the lassial solution is in-deed the stationary point for the ation. For the spaetimes with boundariesthis observation leads to some important onsequenes. Due to the possibleboundary terms lassial solution does not neessary is a stationary point.The point is that if even the variation of the bulk ation on the solution van-ishes, the variation of the boundary ation an be di�erent from zero. Thisproblem an be ured by adding appropriate boundary term to the bulk a-tion. For the spin - 2 �eld this term is alled Hawking - Gibbons term [40℄.38



Now we are going to show how one onstruts appropriate boundary ationfor the fermioni �eld [38, 41℄.We begin with the Dira ation (3.2) whih we write here one again (inEulidean signature) for onvenieneSbulk = � Z dd+1xpg�12	D=	�m		�: (3.7)Variating this ation and using the equations of motion for 	 and 	 we getÆSbulk = � Z dd+1xpg �Æ	D=	 +	D=Æ	�mÆ		�m	Æ	�= � Z 10 duZ ddxpg �	D=Æ	�m	Æ	�= 12 Z ddxpgindued	uÆ	= 12 Z ddxpgindued �	�Æ	+ � 	+Æ	��; (3.8)where we have used projetors �� = 12(1� u) to de�ne 	� = ��	.As we will see in the next setion 	� and 	+ are not independent. Infat 	+ an be expressed in terms of 	�, i.e. we are not allowed to vary 	+freely. In other words we must set Æ	+ = 0.Now it is easy to see that ÆSbulk is itself the variation of a surfae termat the boundary ÆSbulk = �ÆSbdy; (3.9)with Sbdy = Z ddxpgindued	+	�: (3.10)This boundary ation Sbdy must be added to the Dira ation in order tomake variational priniple well-posed.For the Lifshitz spaetimes the derivation is ompletely analogous andthus the boundary term has the same form.39



3.3 Eulidean SignatureWe begin by reviewing the renormalization proedure for fermions on the AdSwith Eulidean signature [38,42℄. Here we shall already see many importantfeatures whih were not relevant for the bosons. Firstly, the equation ofmotion for the fermions is the �rst order equation. Beause of it we shouldpose the Dirihlet problem partiularly arefully. This ompliation is relatedto the other obvious problem: fermions in the bulk and those in the boundarytheory have di�erent numbers of omponents. Seondly, to set the variationalation priniple for the fermions in the bulk we must add a boundary term(see setion 3.2), whih will guarantee, that the ation is extremized on theequation of motion [41℄.The lassial AdS/CFT presription says that the on-shell bulk ation isthe generator of onneted orrelators in the boundary theory:�exp[Z ddx�O +O�℄� = e�SSUGRA[�;�℄; (3.11)where � and � are the boundary values of the bulk fermions and SSUGRAmust be evaluated on the solution to the equation of motion (saddle pointapproximation). Note, that so far it is very formal equation, sine generiallyboth sides are in�nite. In order to be able to extrat �nite result we mustperform renormalization. But so far we shall work formally, as if everythingis �nite and well-de�ned.Taking on both sides the funtional derivative with respet to � we get
O� = �ÆSÆ� = ���; (3.12)where �� is the momentum onjugate to �. How do we de�ne the fermioniEulidean propagator (or fermioni Eulidean 2-point funtion)? The answeris given by the linear response theory:
O� = G(k)t�: (3.13)Thus, the Eulidean propagator is given by the matrix relating the (renor-40



malized) 1-point funtion of the dual boundary fermioni operator O andthe soure �. These in turn an be identi�ed with the leading oe�ients inthe power expansions of the normalizable and non-normalizable mode orre-spondingly. t appears beause G = 
OOy� = 
OO� t.After giving the rough idea let's look how it really works on the example:fermions on asymptotially AdS. The equation of motion we get by plug-ging z = 1 in the (3.6) and replaing !2 by �!2 (beause of the hange insignature)��2u � du�u + 1u2 ��m2 �m + d24 + d2�� k2� � = 0; (3.14)where we have introdued k2 = !2 + ~k2 and de�ned  � = 12(1� u) . Thegeneral solution for m not a half-integer is � = u d+12 fC�1 (k)Im�1=2(ku) + C�2 (k)I�m�1=2(ku)g: (3.15)When m is a half-integer we need to introdue the modi�ed Bessel fun-tion of the seond kind K as a seond linearly independent solution and thegeneral solution takes the form � = u d+12 fC�1 (k)Im�1=2(qu) + C�2 (k)Km�1=2(qu)g: (3.16)Using the series expansion of modi�ed Bessel funtions (Appendix A) we�nd the leading behavior of (3.15) + = +1 (k)u d2+m + +2 (k)u d2�m+1 (3.17) � = �1 (k)u d2+m+1 + �2 (k)u d2�m (3.18)The questions arises: how should we impose boundary onditions. Naively,we ould impose Dirihlet boundary onditions on both projetions 	�. Butin this ase we would �x the solution uniquely and generially it will not beregular in the bulk. The right thing to do is to impose �rst the regularityondition in the bulk, then solve for 	� and reognize the soure as the41



leading oe�ient of the non-normalizable mode. We immediately see thatnear the boundary the dominant term has oe�ient �2 . Thus, it orrespondsto the soure on the CFT side and we should impose the boundary ondition�2 � �. The normalizable mode of  + goes with the +1 (k) oe�ient (beingthe response of the dual operator O). We want to �nd the matrix whihrelates +1 (k) and �2 (k).Now we onstrut the on-shell ation [42℄. Let us onsider m not half-integer. We have	� = e�i!t+i~k~xu d+12 fC�1 (k)Im�1=2(ku) + C�2 (k)I�(m�1=2)(ku)g= �1 u d2 +m� 12 + 12(1 + s�a (u; k))+ �2 u d2 �m� 12 + 12(1 + s�b (u; k)); (3.19)where we rede�ned C's multiplied with some fators by 's and we havede�ned the series s�a (u; k) � 1Xj=1 a�j (m)(�k2)ju2j;a�j (m) � (�1j)j!22j �(1 + (m� 12))�(j + 1 + (m� 12)) : (3.20)sb and bj are de�ned similarly, but with (m� 12)! �(m� 12). We write 	+and 	� separately	+ = +1 u d2+m(1 + s+a (u; k)) + +2 u d2�m+1(1 + s+b (u; k)); (3.21)	� = �1 u d2+m+1(1 + s�a (u; k)) + �2 u d2�m(1 + s�b (u; k)); (3.22)and identify the soure as the term multiplying the �2 oe�ient and therespone as the term multiplying +1 oe�ient (when m > 1=2). The oef-�ients �1;2 are not atually independent. If we plug the solution bak into
42



(3.5) (with z = 1) and ollet powers of u we get (if m is not integer)0 = [(�2m + 1)+2 + i 6 k�2 ℄u d2�m+1 (3.23)+ [(�2m + 1)�1 + i 6 k+1 ℄u d2+m+1 + ::: (3.24)where we have generalized ki !6 k. It follows that�1 = 12m+ 1 i 6 k+1 ; (3.25)+2 = 12m� 1 i 6 k�2 (3.26)(now it is again lear, that we were not allowed to impose boundary ondi-tions on both  + and  �).Now we repeat the same exerise for half-integer m.	� = e�i!t+i~k~xu d+12 fC�1 (k)Im�1=2(ku) + C�2 (k)K(m�1=2)(ku)g= �1 u d2+m� 12+ 12 lnu(1 + s�a (u; k)) + �2 u d2�m� 12+ 12 (1 + s�d (u; k)): (3.27)Note that we are using the units in whih the radius of AdS is equal to 1.The argument of the logarithm inludes fators of the radius to render themdimensionless. The dj oe�ients are de�ned di�erently from aj and bj, butthe spei� expressions for them is not important for us at the moment.Written separately	+ = +1 u d2+m lnu(1 + s+a (u; k)) + +2 u d2�m+1(1 + s+b (u; k)); (3.28)	� = �1 u d2+m+1 lnu(1 + s�a (u; k)) + �2 u d2�m(1 + s�d (u; k)): (3.29)Again, the oe�ients are not independent. In fat, when m 6= 1=2 they arerelated in the same way as for not half-integer m. For m = 1=2 one gets+1 = �i 6 k�2 : (3.30)Now we turn to the evaluation of the on-shell ation. As already men-tioned the bulk term vanishes when evaluated on a solution. The nonzero43



ontribution omes from the boundary term Sbdy. We split Sbdy into twoterms Sbdy = Svar + SCT ; (3.31)where Svar are terms required for the variational priniple and SCT inludesounterterms whih will anel the divergenes. As we already knowSvar = Z ddxp	+	� (3.32)where the integration is over u = � surfae and  is the determinant of theindued metri.For m not half-integerSvar = Z ddx 1�d (+1 �2 �d(1 + fa+b�)+ +2 �1 �d+2(1 + fb+a�)+ +1 �1 �d+2m+1(1 + fa+a�)+ +2 �2 �d�2m+1(1 + fb+b�)); (3.33)where we have de�nedfa+b� = s+a (�; k) + s�b (�; k) + s+a (�; k)s�b (�; k)�; (3.34)and similarly for fa+a� , fb+a� , fb+b�, all of whih are the power series in�2 starting with �2. We now see that only the fourth term an diverge ifm > 1=2. We want to rewrite Svar in terms of the +1 and �2 (response andsoure). Using (3.26) we getSvar = Z ddx 1�d [+1 �2 �d 12m� 1�2 i 6 k�2 �d�2m+1(1 + fb+b�) +O(�d+2)℄:(3.35)After having isolated the divergenes we must write an SCT whih mustanel the divergenes and has to respet the symmetries of the theory, i.e.44



must be ovariant in the soure - boundary value of 	�. The appropriateSCT is given by SCT = Z ddxp 1Xj=0 �j(m)	� 6 ���j�	�= Z ddx 1�d 1Xj=0 �1+2j�j(m)	� 6 ��j	�; (3.36)where 6 �� = � 6 � (the power of � omes from the inverse vielbein evaluatedat u = �) and �j� is some power j of the salar Laplaian �� on the u = �surfae, whih in our ase is simply �� = �2�2. Coe�ients �j(m) are stillto be determined. When we take 	 = eikx and plug in the solution, theounterterms beomeSCT = Z ddx 1�d 1Xj=0 �1+2j�j(m)	� 6 k(�k2)j	�= Z ddx 1�d 1Xj=0 �1+2j�j(m)(�d+2m+2�1 i 6 k(�k2)j�1 (1 + fa�a�)+ �d+1�1 i 6 k(�k2)j�2 (1 + fa�b�)+ �d+1�2 i 6 k(�k2)j�1 (1 + fb�a�)+ �d�2m�2 i 6 k(�k2)j�2 (1 + fb�b�)): (3.37)The oe�ients �j(m) are determined by the requirement that the last termmust anel potential divergenes in Svar, i.e.12m� 1(1 + fb+b�) + 1Xj=0 �j(m)(��2k2)j(1 + fb�b�): (3.38)must vanish order by order in ��2k2 up to order �2m�1. From this equationall the �j(m) an be determined reursively and thus SCT is �xed. Expliitexpressions for the �rst of them one an �nd in [42℄.The similar story for half-integer m an be found in [42℄.Now we alulate the 2-point funtion for the easiest ase: pure AdS with45



not half-integerm. For that we impose the regularity ondition on the (3.15).Regularity is ahieved only if C+1 (k) = �C+2 (k). Note, that In � I�n � Kn.This results in +1 (k) = 1�(m+ 1=2) �k2�m�1=2 C+1 (k); (3.39)+2 (k) = 1�(�m + 3=2) �k2��m+1=2 C+2 (k): (3.40)Colleting last 2 equations together with (3.26) we �nd the Eulidean prop-agator G(k) = �(�m + 1=2)�(m� 1=2) �k2�2m�1 12m� 1 i 6 k:t (3.41)For half-integer m we pik Kn immediately as the regular solution andget similar result.3.4 Lorentzian SignatureLet's think about renormalization. If there are no soures on Eulidean seg-ments of QFT (as is the ase for the vauum orrelators) then only normaliz-able modes are allowed on Eulidean AdS. These give only �nite ontributionto the ation (Dira ation vanishes obviously and Svar is �nite). Analysison the onformal boundary of Lorentzian AdS is exatly the same as for theEulidean one (we have only to distinguish between spaelike and timelikemomenta). So, the only soure of possible divergenes are the hypersur-faes along whih Eulidean and Lorentzian segments are glued together.The absene of these divergenes is guaranteed by the mathing onditions(ompare [5℄).
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3.4.1 Feynman PropagatorThe equation of motion on the Lorentzian segment we get by plugging z = 1in (3.6): ��2u � du�u + 1u2 ��m2 �m+ d24 + d2�� q2� � = 0 (3.42)This is the same equation as one gets for Eulidean signature of AdS. Theonly di�erene is that now q2 = �!2+~k2 and one has to distinguish betweenspaelike and timelike momenta.Next, we want to disuss the solution to this equation of motion. Thesolution for spaelike momenta when m is not a half-integer is � = u d+12 fC�1 (k)Im�1=2(qu) + C�2 (k)I�(m�1=2)(qu)g; (3.43)where I is a modi�ed Bessel funtions of the �rst kind and C�1 , C�2 are spinorsof de�nite hirality. We behold both solutions, sine we are interested notonly in pure AdS bakground, but also in asymptotially AdS, i.e. bothsolutions an play a role depending on the ondition in the interior of thebulk.When m is a half-integer we need to introdue the modi�ed Bessel fun-tion of the seond kind K as a seond linearly independent solution and thegeneral solution takes the form � = u d+12 fC�1 (k)Im�1=2(qu) + C�2 (k)Km�1=2(qu)g: (3.44)To get the solution for timelike momenta we analytially ontinue the solutionfor spaelike momenta to the ase of imaginary arguments and get (for m -half-integer) � = u d+12 fC�1 (k)Jm�1=2(qu) + C�2 (k)Ym�1=2(qu)g; (3.45)where J and Y are Bessel funtions. From the series expansions of Besselfuntions (Appendix A) we see, that Jn (In) orresponds to the normalizable47



mode while Yn (Kn) orresponds to the soure. Deep in bulk these funtionsbehave asu d+12 Jm�1=2(qu) �r 2�qud=2 os�qu� (m� 1=2)�2 � �4� ; (3.46)
u d+12 Ym�1=2(qu) �r 2�qud=2 sin�qu� (m� 1=2)�2 � �4� (3.47)u d+12 Km�1=2(qu) �r �2qud=2e�qu (3.48)whih shows, that for timelike momenta no linear ombination of the solu-tions remains �nite as u ! 1, i.e. any solution that does remain �nite asu!1 should be obtained as an in�nite sum over the modes. For spae-likemomenta regularity in the bulk selets Kn as the only possible solution. Butnote, that this solution is not normalizable.After we understood the struture of the solution on the Lorentzian bulkM1, let us return to the presription of Balt C. van Rees and Skenderis. Con-sider the Eulidean manifoldsM0 andM2 with time oordinates�1 < � < 0and 0 < � < 1, respetively (ompare �gure 2.1). The mode solutions onM0 andM2 are obtained by the usual replaement t! �i� in the Lorentzianmodes. Physially, we do not have any soures on these segments, thus thesolutions on M0 and M2 should be purely normalizable. Furthermore, onlynegative (positive) frequenies are allowed on M0 (M2). Expliitely the so-lutions on these segments are the linear ombinations ofej!j�0+i~k~xu d+12 Jm�1=2(qu) on M0e�j!j�2+i~k~xu d+12 Jm�1=2(qu) on M2 (3.49)Next, we onstrut the mode whih extends over all the segments. On
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the Lorentzian segment (by analogy with the Eulidean ase) we try	�1 (t; ~x; u) = 1(2�)d ZCd! Z d~ke�i!t+i~k~x qm�1=2�2m�1�1=2�(m� 12)u d+12 Km�1=2(q�u)(3.50)Note, that we still have to speify the integration ontour C, sine the Besselfuntions Yn and Kn have branh uts for integer index n. To understand,what is happening, note that Km�1=2(qu) is unambiguously de�ned for spae-like momenta q2 = �!2 + ~k2 > 0. For timelike momenta q2 < 0 we have toonsider branh uts. We de�ne the square root q� = p�!2 + ~k2 � i� (justabove the negative real axis). This hoie (as we shall see later) orrespondsto the Feynman i� presription for the propagator. To hek that (3.50) is�nite in the bulk (u ! 1) we perform the integration by deforming theontour and integrating along the branh ut. The result is [5℄	�1 (t; ~x; u) = i��d=2�(m� 1=2)�(d+m� 1=2)22m�1 ud+m+1=2�1=2(�t2 + ~x2 + u2 + i�)d+m�1=2 ;(3.51)whih is obviously �nite for large u (but note, that asymptoti behavior di�ersfrom that of salar �eld). By analogy with [5℄ we easily �nd the extensionsto the Eulidean segments	�0 (�0; ~x; u) = i��d=2�(m� 1=2)�(d+m� 1=2)22m�1� ud+m+1=2�1=2(�(�T + i�0)2 + ~x2 + u2 + i�)d+m�1=2 ; (3.52)	�2 (�2; ~x; u) = i��d=2�(m� 1=2)�(d+m� 1=2)22m�1� ud+m+1=2�1=2(�(T � i�2)2 + ~x2 + u2 + i�)d+m�1=2 ; (3.53)satisfying mathing onditions. We will show how to �nd these modes inmomentum spae in setion 3.4.3. i� insertions are needed on the on theinitial and �nal hypersurfaes given by �0 = 0 and �2 = 0. Obviously the49



mathing onditions are satis�ed.Now it is very important to realize that no other i� insertion is possibleon the Lorentzian mode. If we would hange it on the Lorentzian mode wemust hange it on the Eulidean segments aordingly. But suh a hange onthe Eulidean segment is not allowed, sine it would introdue a singularityin either 	�0 (�0; ~x; u) or 	�2 (�2; ~x; u). For instane, if we replae +i� by �i�on M2, then 	�2 (�2; ~x; u) is singular at �2 = �=2T , around the point given by~x2 + u2 = T 2. After some meditation we onlude, that the i�-insertion in3.51 is the only one whih moves the singularity everywhere away from theintegration ontour!We split the ontour-integrated ation intoS = � Z 0�1d�0LE(	[0℄) + Z T�Td�0LL(	[1℄)� Z 10 d�2LE(	[2℄) (3.54)with the LagrangiansLL(	) = ip�g(	�MDM	�m		) (3.55)LE(	) = �pg(	�MDM	�m		) (3.56)Next, we require ontinuity of �elds and onjugate momenta (1-point fun-tions) on the gluing surfaes, whih orresponds to the ontinuity of 	+ and	�: 	[0℄�(�0 = 0; ~x; u) = 	[1℄�(t1 = �T; ~x; u); (3.57)	[1℄�(t1 = T; ~x; u) = 	[2℄�(�2 = 0; ~x; u): (3.58)Note, that Weyl projetions are the same on Lorentzian and on Eulideansegments. Sine both of them must be hermitian no additional fators of iare possible.Next, we are going to show that in order to satisfy these mathing on-ditions no normalizable modes an be added to the (3.50). Try to add some
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normalizable modesY �1 (t; ~x; u) = 1(2�)d Z d! Z d~ke�i!t+i~k~xA�[1℄(!;~k)u d+12 Jm�1=2(jqju)�(�q2);(3.59)Y �0 (�0; ~x; u) = 1(2�)d Z d! Z d~kej!j�0+i~k~xA�[0℄(!;~k)u d+12 Jm�1=2(jqju)�(�q2);(3.60)Y �2 (�2; ~x; u) = 1(2�)d Z d! Z d~ke�j!j�2+i~k~xA�[2℄(!;~k)u d+12 Jm�1=2(jqj u)�(�q2)(3.61)Continuity ondition between M0 and M1 is Y �0 (�0 = 0; ~x; u) = Y �1 (t =�T; ~x; u). Although it does not imply equality of integrands immediately,but note that the modes ud=2Jl(qu) are orthogonalZ 10 duu�1Jl(ku)Jl(k0u) = Æ(k � k0); (3.62)with  a onstant. Thus we an equate the integrands (up to ! $ �!)A�[1℄(!;~k)e�i!T + A�[1℄(�!;~k)ei!T = A�[0℄(j!j; ~k) (3.63)As we already know, A+ and A� oe�ients are not independent of eahother (3.26): A+ = i 6 qA�2m� 1 ; (3.64)whih results in!A�[1℄(!;~k)e�i!T � !A�[1℄(�!;~k)ei!T = j!jA�[0℄(j!j; ~k): (3.65)Multiplying 3.63 by ! and omparing it with 3.65 we onlude, that A�[1℄(�!;~k)and hene also A+[1℄(�!;~k) must vanish for positive !. Analogously, impos-ing ontinuity of �elds and momenta on the boundary between M1 and M2implies also vanishing of A�[1℄(!;~k). Physially it naturally means that only51



negative frequenies are allowed to the past of the soures, and only positivefrequenies - in the future. Thus, there are no normalizable states we anadd to the propagator on the Lorentzian piee of the bulk. (3.50) is unique!Thus we found the unique modes on the entire manifold. The rest is thesame as in the Eulidean ase. Mathing onditions have produed orreti� insertions!3.4.2 Other PropagatorsIn last subsetion we have shown whih i� insertion in q� =p�!2 + ~k2 � i�yields the Feynman or time-ordered propagator, i.e. gives the orret pathin the !-plane around the poles. From here it is easy to understand whihinsertions are needed in order to get time-reversed, retarded and advanedpropagators. For the referene we write them here.For the time-reversed propagators we must replae � by �� in the prop-agator, i.e. replae q� = p�!2 + ~k2 � i� by q�� = p�!2 + ~k2 + i� = k� in(3.50) and getX�1;time-reversed(t; ~x; u)= 1(2�)d ZCd! Z d~ke�i!t+i~k~x qm�1=2��2m�1�1=2�(m� 12)u d+12 Km�1=2(q��u): (3.66)For the retarded propagator the orret pole struture is given by qret =q�(! + i�)2 + ~k2 (both poles are below the real axis) andX�1;ret(t; ~x; u)= 1(2�)d ZCd! Z d~ke�i!t+i~k~x qm�1=2ret2m�1�1=2�(m� 12)u d+12 Km�1=2(qretu): (3.67)Finally, we get advaned propagator de�ning qadv = q�(! � i�)2 + ~k2
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(both poles are above the real axis). And againX�1;adv(t; ~x; u)= 1(2�)d ZCd! Z d~ke�i!t+i~k~x qm�1=2adv2m�1�1=2�(m� 12)u d+12 Km�1=2(qadvu): (3.68)3.4.3 Thermal ContourAdS/CFT orrespondene is very important tool for studying the stronglyoupled systems at �nite temperature (and density). Standard approahes(like lattie gauge theory) at urrent stage of development annot produereliable results for suh systems. Hene at the moment AdS/CFT is the bestapproah for investigating interesting temperature e�ets of suh stronglyoupled systems as quark-gluon plasma, superondutors, super�uids, et.To introdue �nite temperature in QFT one needs to ompatify the timediretion. In AdS/CFT it an be done in two inequivalent ways. First, onean put a blak hole in the bulk and assoiate the Hawking temperature tothe temperature on the �eld theory side. The spaetime gets urved and thereappears a ompat diretion in the boundary. Seond, one an ompatifyone of the boundary diretions by hand, i.e. one an alulate orrelationfuntions in thermal ensemble (and not in the vauum). In fat, for a giventemperature only one of these mehanisms an give a onsistent result. Thereis the so alled Hawking-Page transition between these two regimes [20℄.In the ontext of real-time holographi renormalization we are not inter-ested in the bakgrounds with a horizon, sine then there are no modes, butonly quasinormal modes, i.e. all the poles are away from the real axis andthere is no question about hoosing the ontour or i�-insertions.Here we alulate a orrelation funtion in a thermal ensemble. To om-pute a thermal orrelator we take the Keldysh-Shwinger ontour with thetime diretion to be ompat of period � (see �gure 3.1). Fermioni �eldsmust satisfy antiperiodi boundary onditions: 	(0) = �	(�i�). Denotethe segments by M1(t1 2 [0; T ℄), M2(t2 2 [T; 2T ℄) and M3(�3 2 [0; �℄). Weplae a Æ-funtion soure at t1 = t̂1, ~x = 0. We make an eduated guessand look for a thermal propagator as a linear ombination of retarded and53
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Figure 3.1: Keldysh - Shwinger ontour for alulating thermal propagator.Figure is taken from [43℄.advaned propagators	�1 (t1; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)� Z d! Z d~ke�i!(t1�t̂1+i~k~x)�A(!;~k)qm�1=2ret Km�1=2(qretu)+B(!;~k)qm�1=2adv Km�1=2(qadvu)�: (3.69)with the so far unknown oe�ients A and B. In order for this to orrespondto a Æ-funtion soure we must have A+B = 1 (B = �A gives a normalizablemode).On other segments only normalizable modes are allowed and we make anansatz for the modes there	�2 (t2; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)Z d! Z d~ke�i!(2T�t2�t̂1)+i~k~xC(!;~k)qm�1=2Jm�1=2(qu)�(�q2) (3.70)	�3 (�3; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)Z d! Z d~ke�!(�3�it̂1)+i~k~xD(!;~k)qm�1=2Jm�1=2(qu)�(�q2) (3.71)with the to be determined oe�ients C and D.54



The gluing onditions are	�1 (t1 = T ) = 	�2 (t2 = T )	�2 (t2 = 2T ) = 	�3 (�3 = 0)	�3 (�3 = �) = �	�1 (t1 = 0): (3.72)Note an important minus sign in the last equation. It is required by theantiperiodiity of thermal orrelators and will give rise to the Fermi statistisas we shall see shortly.In what follows we will use the following trik to determine unknownoe�ients. We multiply (3.72) with e�i~k0~xJm�1=2(jq0ju) with q02 = �!02+~k02and integrate over u and ~x. We shall make use of the following identities forBessel funtions: Z 10 dxxJn(qx)Jn(q0x) = 1q Æ(q � q0) (3.73)and Z 10 dxxJn(ax)Kn(bx) = �ab�n 1a2 + b2 : (3.74)Let us �rst onsider the boundary between M1 and M2. There we havean equalityZ d! Z d~ke�i!(T�t̂1)+i~k~xu�A(!;~k)qm�1=2ret Km�1=2(qretu)+B(!;~k)qm�1=2adv Km�1=2(qadvu)�= Z d! Z d~ke�i!(T�t̂1)+i~k~xuC(!;~k)qm�1=2Jm�1=2(qu): (3.75)
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The omputation for the left-hand side givesZ ~dxd!2� d~k(2�)d e�i!(T�t̂1)+i(~k�~k0)~x� Z 10 du�A(!;~k)qm�1=2ret uJm�1=2(jq0ju)Km�1=2(jqretju)+B(!;~k)qm�1=2adv uJm�1=2(jq0ju)Km�1=2(jqadvju)�= Z d!2� e�i!(T�t̂1) " A(!;~k0)jq0jm�1=2�q02 � (! + i�)2 + ~k02 + B(!;~k0)jq0jm�1=2�q02 � (! � i�)2 + ~k02#= �jq0jm�1=2 Z d!2� e�i!(T�t̂1) " A(!;~k0)(! + i�)2 � !02 + B(!;~k0)(! � i�)2 � !02#= ijq0jm�1=22!0 hA(!0; ~k0)e�i!0(T�t̂1) + A(�!0; ~k0)ei!0(T�t̂1)i ; (3.76)where in the last line we losed the ontour in the lower half-plane (pikingadditional minus sign beause of the negative orientation) and thus only the�rst term has support after the soure is swithed o� (as it should be forretarded propagator).The omputation on the right-hand side yieldsZ d~xd!2� d~k(2�)d e�i!(T�t̂1)+i(~k�~k0)~xC(!;~k)� Z 10 duuJm�1=2(jqju)Jm�1=2(jq0ju)�(�q2)= Z d!2� d~ke�i!(T�t̂1)Æ(~k � ~k0)C(!;~k)jq0j Æ(q � q0)�(!2 � ~k2)= Z d!2� e�i!(T�t̂1)C(!;~k0)Æ(! � !0) + Æ(! + !0)!0 �(!2 � ~k02)= 12�!0 hC(!0; ~k0)e�i!0(T�t̂1) + C(�!0; ~k0)ei!0(T�t̂1)i �(!02 � ~k02): (3.77)Equating (3.76) and (3.77) we �nally getC(!;~k) = i�jqjm�1=2A(!;~k): (3.78)The mathing between M3 and M1 is performed likewise, the only dif-56



ferene being that now the advaned propagator gives non-zero ontributionand beause of the opposite ontour orientation we get additional minus signwhih anels another minus oming from antiperiodiity. Altogether,D(!;~k)e��! = i�jqjm�1=2B(!;~k): (3.79)Mathing between M2 and M3 trivially givesC(!;~k) = D(!;~k): (3.80)Last three equation together with A+B = 1 giveA(!;~k) = 11 + e��! ; (3.81)B(!;~k) = 11� e�! (3.82)and 	�1 (t1; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)� Z d! Z d~ke�i!(t1�t̂1)+i~k~x�qm�1=2ret Km�1=2(qretu)1 + e��!+ qm�1=2adv Km�1=2(qadvu)1� e�! �: (3.83)We have derived the well-known formula for a thermal orrelatorhT (O(x)O(x0))i = �N(!)�adv(!;~k) + (1 +N(!))�ret(!;~k) (3.84)It is very satisfatory that the real-time formalismwith all its tehnial detailsprodues some results whih we expet to hold quite generally.(3.83) an be equivalently rewritten as retarded propagator plus �thermal
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bath� ontribution:	�1 (t1; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)� Z d! Z d~ke�i!(t1�t̂1)+i~k~x�qm�1=2ret Km�1=2(qretu)+ qm�1=2adv Km�1=2(qadvu)� qm�1=2ret Km�1=2(qretu)1� e�! �: (3.85)For the soure di�erent from the Æ-funtion one should replae 1 by theFourier transform of the soure in the numerators of (3.82).
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Chapter 4Non-relativisti Holography
4.1 Lifshitz Spaetime and Condensed MatterPhysisOne of the researh areas in whih gauge/gravity duality is suessfullyapplied is ondensed matter physis. For a review and further referenessee [44℄. Probably, the most important feature of ondensed matter systemsis that they are not relativisti. This property needs to be re�eted in thedual theory, i.e. the loal symmetry group of the underlying spaetime mustbe not Lorentzian, but for example Galilean. More spei�ally, one speaksabout anisotropi spaes, i.e. spaes whih are invariant under anisotropisalings x! �x; t! �zt; (4.1)where z is alled the dynamial exponent. Roughly speaking, there aretwo families of spaetimes whih satisfy this invariane ondition: so-alledShroedinger spaetime [45,46℄ and Lifshitz spaetime [47,48℄ whih has themetri (3.1). The �rst has the entire Galilean group as its symmetry, but thelast do not admit Galilean boosts and a mass operator.Fermions on the Shroedinger spaetimes were analyzed in [49, 50℄. Herewe will onsider Lifshitz spaetimes. Theories whih do not admit Galilean59



boosts or a mass operator (and therefore partile number is not onserved)have a number of ondensed matter physis appliations, inluding optimallydoped uprates and non-Fermi liquids near the ritial point [51℄. We �rstperform the alulations for the analytially solvable ase (z = 2; m = 0) andthen analyze the struture of divergenes for the general z and m.4.2 Eulidean Propagator for Massless Fermionson Lifshitz Spaetime with z = 2Now we onsider the ase of non-relativisti gauge/gravity duality. We anperform analytial analysis for massless spinor on Lifshitz spaetime withz = 2. We de�ne the projetors �� = 12(1� ut). Then 	� = ��	 satisfyut	� = �	�. We onsider the ase of Eulidean signature �rst. Theequation of motion beomes�u2�2u � (d+ 1)u�u + (�!2u4 � (k2 � i!)u2 + (d2 + 1)2 � 14)� �(u) = 0(4.2)It is interesting to ompare this equation to the equation of motion for a salaron Lifshitz [48℄. It redues to (4.2) if one replaes momentum of the salark2 by (k2 � i!) and identi�es the mass of the salar m2 with (d2 + 1)2 � 14 .Near the boundary we ould make the ansatz  (u) = u�(1 + O(u)). Theharateristi exponents are d+32 and d+12 .(4.2) is the Hermite equation and has general solution �(u) = u d+12 e�!u22 ��1 F (��; 1=2;!u2) + �2 uF (12 + ��; 3=2;!u2)� ; (4.3)where C� are spinors of de�nite hirality, �+ = k24! + 1�i4 , �� = �+ + i=2and F is on�uent hypergeometri funtion. The �rst term has harateristiexponent d+12 (non-normalizable solution) and the seond d+32 (normalizable).Thus we interpret the seond term as a soure, and the �rst as a respone(one-point funtion). 60



The power series expansions of the on�uent hypergeometri funtion isF (a; b; z) = 1Xn=0 (a)nzn(b)nn! (4.4)where (a)n = a!(a�n)! is the Pohhammer symbol. It is onvenient to rewrite �(u) as power series: �(u) = e�!u22 u d+12 ��1 (1 + s�a (u; k)) + u�2 (1 + s�b (u; k))� ; (4.5)where s1;2 are series in even powers of u starting with u2.Now we alulate the on-shell ation. As usually for fermions the bulkterm vanishes and we have only the boundary term. As we will see immedi-ately we do not need any ounterterms in this ase and thusSbdy = Z ddxp	+	�: (4.6)We plug (4.5) in Sbdy and getSbdy = Z ddx 1�d e�!�22 (+1 �1 �d(1 + fa+a�)+ +1 �2 �d+1(1 + fa+b�)+ +2 �1 �d+1(1 + fb+a�)+ +2 �2 �d+2(1 + fb+b�)); (4.7)where we have de�nedfa+b� = s+a (�; k) + s�b (�; k) + s+a (�; k)s�b (�; k)� (4.8)and similarly for fa+a� , fb+a� , fb+b�, all of whih are the power series in �2starting with �2. Now we see that as �! 0 only the �rst term remains �niteand all the other terms vanish. Thus the on-shell ation isS = Z ddx+1 �1 +O(�): (4.9)61



Renormalized ation is Sren = lim�!0S. It generates the onneted orrela-tors for �eld theorye�Sren[�1 ;�1 ℄ = �exp �Z ddx(�1 O +O�1 )�� (4.10)As usually, the oe�ients �1;2 are not independent. Plug (4.3) into theequation of motion (3.5) and multiply by u from the leftu(i!u2t + ikui + uu�u � d+ 12 u) = (i!u2ut + ikuui + u�u � d+ 12 )( + +  �)= (i!u2 + ikuui + u�u � d+ 12 ) + + (�i!u2 + ikuui + u�u � d+ 12 ) �= (ikui(+1 + �1 ) + (+2 + �2 ))u d+32 + ::: (4.11)whih implies �2 = �ikui+1 (4.12)+2 = �ikui�1 (4.13)In order to alulate Eulidean propagator we need to impose regularityof the solution in the bulk. For this we need the asymptoti expansion ofon�uent hypergeometri funtions deep in the bulkF (a; b; z) / �(b)�(b� a)(�z)�a(1 +O(1=z)) + �(b)�(a)ezza�b(1 +O(1=z)) (4.14)Regularity in the bulk is ahieved when+1 = � 12p! �(�+)�(�+ + 1=2)+2 (4.15)Now we are in position to alulate the renormalized orrelator
OO�ren = G(k)t; (4.16)62



where G(k) is de�ned by +1 = �G(k)t�1 . Combine (4.15) with (4.13) andget 
OO�ren = �(�1)1=42 �(�+)�(�+ + 1=2) kp!ui= �(�1)1=42 �( k24! + 1�i4 )�( k24! + 3�i4 ) kp!ui: (4.17)Note, that the modes do not have any poles on the real axis, thus thereare no i�-insertions needed for the real-time propagators.4.3 On the Renormalization for Fermions onLifshitz SpaetimesIn this setion we derive the evaluate the leading terms of the on-shell ationand derive the ounterterms for general z and m. For simpliity we work inEulidean signature.For this purpose it is onvenient to rewrite the equation (3.6) in positionspae:�u2�2u � (d+ z � 1)u�u +�u2z�2t + (z � 1)uzut�t + u2�� +M2��	�(u; t; z) = 0; (4.18)where we de�ned 	� = 12(1 � u)	 and M2� = �d+z2 �2 � (m � 1=2)2. Notealso that � ontains derivatives only with respet to spatial oordinates.(4.18) is a seond order equation. Near the boundary two di�erent salingbehaviors are possible, with the harateristi exponents determined by�<� = 12 (d+ z � j2m� 1j) ; (4.19)�>� = 12 (d+ z + j2m� 1j) : (4.20)Note that the di�erene �>� � �<� = j2m � 1j does not depend on z or d.63



Aording to the usual holographi presription, �<� is the saling behaviorof the soure, whereas the response sales as �>+.Next, we disuss the asymptoti behavior of the fermion near the bound-ary. For notational simpliity we drop � indies. The ruial point to notieis that the equation (4.18) ontains not only integer powers of u, but alsopowers of uz. Beause of this our Ansatz for the asymptoti solution is	(u; t; x) = u�< (u; t; x) + u�> ~ (u; t; x)= u�< Xk;l2Nu2k+lz (2k+lz)(t; x) + u�> Xk;l2Nu2k+lz ~ (2k+lz)(t; x):(4.21)We expet that the so far unknown funtions  (2k+lz)(t; x) are loal funtionof  (0)(t; x).From the Ansatz it is lear that the logarithmi mode, orresponding toonformal anomaly, will appear when �>� � �<� = j2m � 1j = 2k + lz forsome integer k and l. In partiular, for even z (as for z = 1) this modeappears when m is half-integer. For m = 0 the onformal anomaly appearsonly for k = 0, l = 1 and z = 1. These onditions are di�erent from theanalogous ondition for the salars [48℄, sine the equation of motion for thesalar inludes only even powers of uz.The details of the asymptoti expansion depend on the values of d; z andm. We are going to onsider a ouple of representatives ases.Let us assume, that 1 < z < 2. Then the asymptoti expansion beginswith  (u; t; x) = (0)(t; x) + uz (z)(t; x) + u2 (2)(t; x) + u2z (2z)(t; x)+ u3z (3z)(t; x) + :::+ u2+z (2+z)(t; x) + :::+ u4 (4)(t; x) + ::: (4.22)By plugging this Ansatz into the equation of motion (4.18) we get the ex-64



pressions for the �rst  (2k+lz)(t; x) in terms of  (0)(t; x),�(�< + z)(�< � d)�M2� (z) + (z � 1)ut�t (0) = 0; (4.23)�(�< + 2)(�< + 2� d� z)�M2� (2) +� (0) = 0; (4.24)�(�< + 2z)(�< + z � d)�M2� (2z) + (z � 1)ut�t (z) + �2t  (0) = 0:(4.25)Another representative ase is z = 2. First, for non-half-integer m theexpansion beomes	(u; t; x) =u�<( (0)(t; x) + u2 (2)(t; x) + u4 (4)(t; x) + :::)+ u�>( ~ (0)(t; x) + u2 ~ (2)(t; x) + :::): (4.26)Again,  (2)(t; x) and  (4)(t; x) are determined by�(�< + 2)(�< � d)�M2� (2) + ut�t (0) +� (0) = 0; (4.27)�(�< + 4)(�< + 2� d)�M2� (4) + �2t  (0) + ut�t (2) +� (2) = 0:(4.28)For illustration let us onsider also the ase of half-integer m. For de�-niteness, we set m = 3=2. Then the expansion takes the form	(u; t; x) =u�<( (0)(t; x) + u2( (2)(t; x) + lnu ~ (2)(t; x)) + :::): (4.29)The oe�ient  (2)(t; x) annot be determined by the asymptoti analysissine it orresponds to the response. It must be derived from the solutionwhih is regular in the bulk. For ~ (2)(t; x) we have(�< + 1� d�M2) ~ (2)(t; x) + ut�t (0) +� (0) = 0: (4.30)Next, we determine the ounterterms. The on-shell ation isSon-shell = Z dd�1xdtpgindued(	+	�)u=�: (4.31)
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In the ase of 1 < z < 2, after plugging in the asymptoti solution, (4.31)leads toSon-shell = Z dd�1xdt �1�jm�1=2j�jm+1=2j� � (0)+  (0)� + �z( (z)+  (0)� +  (0)+  (z)� ) + �2( (2)+  (0)� +  (0)+  (2)� )+ �2z( (2z)+  (0)� +  (0)+  (2z)� + 2 (z)+  (z)� ) + :::�: (4.32)For z = 2 one has a similar struture but without the �z and �2z terms.Now, we should express the divergent part of the on-shell ation onlyin terms of the soure  (0)� . This an be done by plugging the asymptotiexpansion (4.22) bak into the �rst order equation of motion (3.5). Here wederive the ounterterm only for the leading divergene. For m 6= 1=2 we get (0)+ = iuiki1�2m  (0)� , or in position spae  (0)+ = ui�i1�2m  (0)� , where for z 6= 1 istands only for spatial diretions.For 1 < z � 2 and 1=2 < m � z+12 only the �rst term in (4.32) is divergentand the ounterterm ation isSCT = Z dd�1xdtpgindued ui�i1� 2m (0)�  (0)� : (4.33)Trivially, this ounterterm is invariant with respet to anisotropi saling.For the other ranges of parameters the de�ning priniple of �nding the oun-terterm remain the same.(4.33) is the main result of this setion. It allows to perform holographirenormalization in the ases of asymptotially Lifshitz spaes, i.e. whenanisotropi saling behavior appears in the UV region. It is also neessaryto have these ounterterms for numerial studies of suh systems.
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Chapter 5ConlusionsIn this thesis we onsidered one partiular piee of holographi ditionary,namely how the real-time orrelation funtions are enoded in the bulk the-ory. In partiular, we studied, how an one get orret i�-insertions. Wegeneralized the formalism introdued in [4, 5℄ for the ase of fermions andillustrated it on easy examples. Real-time holography is a partiularly inter-esting tool, sine it allows us to study atual dynamis of physial systems,in partiular one an onsider response of the system to small perturbations.In reent years it was understood that fermioni �elds in strongly oupledsystems have partiularly interesting behavior and that using the tehniquesof gauge/gravity duality one an understand many interesting and impor-tant features of suh systems like the quark-gluon plasma, superondutors,non-Fermi liquids, et. Fermioni �elds in real time is a natural marriage ofan interesting objet with a useful tool.In the �rst two hapters we gave a short introdution into the subjetof AdS/CFT orrespondene and hopefully a pedagogial review of the teh-niques of holographi renormalization for Eulidean orrelation funtions andreal-time propagators.The main new results are onentrated in the third and fourth hapters.There we have derived the equation of motion for fermions on general Lifshitzspaetimes and identi�ed the ases when this equation an be solved ana-lytially. For the ase of AdS spaetime we onstruted time-ordered, time-67



reversed, advaned and retarded propagators with the orret i�-insertions.Using the Keldysh-Shwinger ontour we also alulated a propagator onthermal AdS.In another analytially solvable (and also phenomenologially interesting)ase (massless fermions on the Lifshitz spaetime with z = 2) we alulatedthe Eulidean 2-point funtion. Sine the mode solutions in this ase do notinlude poles on the real axis we did not need to derive i�-insertions. Forthe ase of general z and m we investigated the asymptoti expansion of the�elds and obtained the struture of divergenes. We also found the ovariantounterterm ation whih anels the highest order divergene.The results obtained here an be used for studying strongly oupled sys-tems whih approah AdS (Lifshitz) geometry in the UV region. For example,retarded propagator an be used to alulate di�erent transport oe�ientsin suh systems. For the numerial alulation the divergenes of the on-shellation and the struture of ounterterms we derived are of great importane.We would like to mention some diretions for the future work. First,we need to onstrut a Lifshitz blak hole to desribe a non-relativisti �eldtheory at �nite temperature. And seondly, it would be interesting to showfor the fermions, that for the retarded propagator the real-time presriptionof [4,5℄ is equivalent to the infalling wave boundary ondition at the horizon.
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Appendix ABessel FuntionsHere we ollet some mathematial fats onerning di�erent Bessel fun-tions.Series expansion (de�nition) of Bessel funtions areJn(x) = �x2�n 1Xk=0 (�1)kk!�(k + n + 1) �x2�2k ; (A.1)Yn(x) = 2�Jn(x) log x2 � 1� �x2��n n�1Xk=0 (n� k � 1)!k! �x2�2k� 1� �x2�n 1Xk=0 (�1)kk!(k + n)! [ (n + k + 1) +  (k + 1)℄�x2�2k (A.2)where  (x) = �0(x)=�(x) is the digamma funtion.The series expansions of modi�ed Bessel funtions areIn(x) = �x2�n 1Xk=0 1k!�(k + n + 1) �x2�2k ; (A.3)Kn(x) = (�1)n�1In(x) log x2 � �x2��n n�1Xk=0 (�1)k(n� k � 1)!k! �x2�2k+ (�1)n2 �x2�n 1Xk=0  (n + k + 1) +  (k + 1)k!(k + n)! �x2�2k (A.4)Note that modi�ed Bessel funtions are the ordinary Bessel funtions of69



imaginary argument.For the large values of the argument x >> 1 we get asymptoti expansionsJn(x) �r 2�x os(x� n�2 � �4 ); (A.5)Yn(x) �r 2�x sin(x� n�2 � �4 ); (A.6)In(x) � exp2�x�1 + (1� 2n)(1 + 2n)8x + :::�; (A.7)Kn(x) �r 2�xe�x: (A.8)
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